首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5603篇
  免费   779篇
  国内免费   676篇
电工技术   1193篇
综合类   486篇
化学工业   255篇
金属工艺   119篇
机械仪表   575篇
建筑科学   148篇
矿业工程   55篇
能源动力   163篇
轻工业   64篇
水利工程   21篇
石油天然气   42篇
武器工业   95篇
无线电   398篇
一般工业技术   171篇
冶金工业   98篇
原子能技术   24篇
自动化技术   3151篇
  2024年   25篇
  2023年   160篇
  2022年   166篇
  2021年   228篇
  2020年   285篇
  2019年   346篇
  2018年   227篇
  2017年   282篇
  2016年   302篇
  2015年   295篇
  2014年   343篇
  2013年   428篇
  2012年   310篇
  2011年   418篇
  2010年   277篇
  2009年   335篇
  2008年   309篇
  2007年   332篇
  2006年   331篇
  2005年   266篇
  2004年   236篇
  2003年   186篇
  2002年   149篇
  2001年   117篇
  2000年   107篇
  1999年   68篇
  1998年   80篇
  1997年   61篇
  1996年   55篇
  1995年   56篇
  1994年   36篇
  1993年   39篇
  1992年   28篇
  1991年   22篇
  1990年   27篇
  1989年   12篇
  1988年   13篇
  1987年   11篇
  1986年   9篇
  1985年   10篇
  1984年   13篇
  1983年   9篇
  1982年   7篇
  1981年   9篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1974年   3篇
  1959年   2篇
  1954年   3篇
排序方式: 共有7058条查询结果,搜索用时 15 毫秒
21.
通过矿相显微镜、扫描电镜、电子探针、X射线能谱元素面分析等多种手段综合研究了川北某黑色页岩型铼矿中铼的赋存状态。样品为黑色页岩,有机碳含量较高。粘土矿物总量为14.6%,黄铁矿含量16.2%,石英含量37.7%。样品具典型的粘土结构,矿物粒度微细。铼有两种赋存状态,一种呈类质同象形式赋存于黄铁矿内,另一种则以分散形式存在。典型黄铁矿测点Re平均含量为0.024%。黄铁矿是Re的重要载体矿物。建议通过浮选分离黄铁矿,从而实现Re的富集。   相似文献   
22.
ABSTRACT

In this paper, we apply the active disturbance rejection control, an emerging control technology, to output-feedback stabilisation for a class of uncertain multi-input multi-output nonlinear systems with vast stochastic uncertainties. Two types of extended state observers (ESO) are designed to estimate both unmeasured states and stochastic total disturbance which includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance without requiring the statistical characteristics, uncertain nonlinear interactions between subsystems, and uncertainties caused by the deviation of control parameters from their nominal values. The estimations decouple approximately the system after cancelling stochastic total disturbance in the feedback loop. As a result, we are able to design an ESO-based stabilising output-feedback and prove the practical mean square stability for the closed-loop system with constant gain ESO and the asymptotic mean square stability with time-varying gain ESO, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output-feedback control scheme.  相似文献   
23.
A method is proposed to generate categorical colour observer functions (individual colour matching functions) for any field size based on the CIE 2006 system of physiological observer functions. The method combines proposed categorical observer techniques of Sarkar et al with a physiologically-based individual observer model of Asano et al and a clustering technique to produce the optimal set of categorical observers. The number of required categorical observers varies depending on an application with as many as 50 required to predict individual observers' matches when a laser projector is viewed. However, 10 categorical observers are sufficient to represent colour-normal populations for personalized colour imaging. The proposed and recommended categorical observers represent a robust and inclusive technique to examine and quantify observer metamerism in any application of colorimetry.  相似文献   
24.
This paper is concerned with distributed data-driven observer design problem. The existing data-driven observers rely on a common assumption that all the information about the system, and the calculations based upon this information are centralized. Therefore the resulting algorithms cannot be applied to the distributed systems in which each local observer receives only a part of the output signal. On the other hand, traditional model-based distributed state estimation methods generally assume that the processes are decomposed according to the known process models, while in data-driven approaches there is no such information available. The main goal of this paper is to extend the centralized data-driven observer design approach to the distributed framework. The stability of the proposed data-driven distributed observer is also proved analytically. A quadruple-tank process is simulated to demonstrate the performance of the proposed scheme.  相似文献   
25.
This paper focuses on the problem of adaptive robust tracking control for a class of uncertain multiple-input and multiple-output (MIMO) nonlinear system. Unlike most previous research studies, model dynamics, disturbances, and state variables are unknown in this paper. A novel observer-based direct adaptive neuro-sliding mode control approach is proposed of which the only required knowledge is the system output. By incorporating the Adaptive Linear Neuron (ADALINE) neural network (NN) into the conventional sliding mode observer, the proposed observer has favorable performance. In the controller, a radial basis function (RBF) NN is constructed to approximate the unknown equivalent control laws and the estimation of the sliding surface is applied as the input. A gain-adaptation sliding mode term is designed to enhance the robustness of the control system. Besides, the free parameters of the ADALINE NN and the RBFNN are updated online by adaptive laws to obtain optimal approximation performance. Finally, the comparative simulations are given to show the effectiveness and merits of proposed scheme.  相似文献   
26.
This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness.  相似文献   
27.
A method for estimating the sway angle using an observer has already been proposed. The state observer estimates the sway angle accurately and must use the detected sway angle value. However, the estimated sway angle has an error owing to rope length error, friction force, and wind. Moreover, the container mass cannot be determined, and therefore the observer parameter is not suitable. We already proposed robust antisway control for overcoming rope length error without adding a new sensor. Further, we designed a friction disturbance observer to cancel out the influence of the friction force. In this paper, we first propose a container mass estimation method when a crane system performs rolling up control. The observer parameter can be selected using the estimated mass value. Second, in crane parallel shift control, we propose a robust antisway control even when there is a wind disturbance. We design a wind disturbance observer and propose a wind disturbance estimator to separate the friction observer output from the wind disturbance observer output. We confirm through experiments that the proposed method can reduce vibration.  相似文献   
28.
This paper deals with the problem of fault estimation and accommodation for a class of networked control systems with nonuniform uncertain sampling periods. Firstly, the reason why the adaptive fault diagnosis observer cannot be applied to networked control systems is analyzed. Based on this analysis, a novel robust fault estimation observer is constructed to estimate both continuous‐time fault and system states by using nonuniformly discrete‐time sampled outputs. Furthermore, using the obtained states and fault information, a nonuniformly sampled‐data fault tolerant control law is designed to preserve the stability of the closed‐loop system. The proposed scheme can not only guarantee the impact of continuous‐time uncertainties and discrete‐time sampled estimation errors on the faulty system to satisfy a H performance index but also repress the negative effect of the unknown intersample behavior of continuous‐time fault by use of an inequality technique. Finally, simulation results are included to demonstrate the feasibility of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
29.
The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework.  相似文献   
30.
This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号